Reg. No. :						
				-		

Question Paper Code: 80873

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2024.

Fourth/Fifth/Sixth Semester

Civil Engineering

MA 8491 — NUMERICAL METHODS

(Common to: Aeronautical Engineering/Aerospace Engineering/Agriculture
Engineering/Electrical and Electronics Engineering/Electronics and Instrumentation
Engineering/Instrumentation and Control Engineering/Manufacturing
Engineering/Mechanical Engineering (Sandwich)/Mechanical and Automation
Engineering/Biotechnology and Biochemical Engineering/Chemical
Engineering/Chemical and Electrochemical Engineering/Plastic
Technology/Polymer Technology/Textile Technology)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is the criterion for the convergence in Newton-Raphson method?
- 2. Solve by Gauss-Elimation method 2x + y = 3; 7x 3y = 4.
- 3. Prove that the relation $E = e^{hD}$.
- 4. Evaluate: $\Lambda_{bc}^2 \left(\frac{1}{a}\right)$
- 5. What is the error in the trapezoidal rule?
- 6. Write the formula for Romberg's integration.
- 7. Using Euler's method, find y(0.01) given y' = -y, y(0) = 1.
- 8. State the fourth order Runge-Kutta method formula to solve $y' = f(x, y), y(x_0) = y_0$.

- 9. Classify the partial differential equation $u_{xx} + 2u_{xy} + 4u_{yy} = 0$.
- 10. Write Bender-Schmidt's explicit formula for solving heat equation.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Use fixed point iteration method to solve the equation $f(x) = \cos x 3x + 1$. (8)
 - (ii) Solve the following system of equations by the Gauss-Seidal method. (8)

$$28x + 4y - z = 32;$$

$$2x + 17y + 4z = 35;$$

$$x + 3y + 10z = 24$$

Or

(b) (i) Apply Gauss-Jordan method to find the solution of the following system. (8)

$$x + y + 5z = 7;$$

$$2x + 10y + z = 13;$$

$$10x + y + z = 12$$

(ii) Find the numerically largest eigen value of $A = \begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$ and

the corresponding eigen vector of the matrix using Power method.

Let the initial vector be
$$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$$
. (8)

12. (a) (i) Using Newton's divided difference formula, evaluate f(8) and f(15) given. (8)

x	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

(ii) The following data are taken from the steam table:

,					
Temperature °C	140	150	160	170	180
Pressure kgf/cm ²	3.685	4.854	6.302	8.076	10.225

Find the pressure at temperature $t = 142^{\circ}\text{C}$ and $t = 175^{\circ}\text{C}$

Or

(8)

(b) (i) Using Lagrange's interpolation formula, find y(10) from the following table. (8)

 x
 5
 6
 9
 11

 y
 12
 13
 14
 16

(ii) The following values of x and y are given

(8)

x 1 2 3 4

y 1 2 5 11

Find the cubic splines and hence evaluate y(1.5) and y'(3)

13. (a) (i) Obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 50, given that x = 50 - 51 - 52 - 53 - 54 - 55 - 56 $y = \sqrt[3]{x} - 3.6840 - 3.7084 - 3.7325 - 3.7563 - 3.7798 - 3.8030 - 3.8259$

(ii) Evaluate $\int_{1}^{1.2} \int_{1}^{1.4} \frac{1}{x+y} dx dy$ by trapezoidal rule with h = k = 0.1. (8)

Or

- (b) (i) Evaluate the integral $\int_0^1 \frac{x^2}{1+x^3} dx$ using Simpson 1/3 rule. Compare the error with the exact value. Take h = 0.25. (8)
 - (ii) Using three point Gaussian quadrature formula, evaluate $\int_{0}^{1} \frac{dx}{1+x}$. (8)
- 14. (a) Determine the value of y(0.4). Using Milne's predictor-Corrector method given $y' = xy + y^2$, y(0) = 1; use Taylor series method to get the values of y(0.1), y(0.2) and y(0.3). (16)

Or

(b) If $y' = 2e^x y$, y(0) = 2, then find y(0.4) using Adam's predictor-corrector formula, by calculating y(0.1), y(0.2) and y(0.3) using Euler's modified formula. (16)

80873

15. (a) Derive explicit scheme to solve the wave equation and using it to solve $4u_{xx} = u_{tt}$ subject to u(0, t) = 0, u(4, t) = 0, $u_t(x, 0) = 0$ and u(x, 0) = x(4-x) taking h = 1 (for 4 time steps). (16)

Or

(b) Find by the Liebmann's method the values at the interior lattice points of a square region of the harmonic function *u* whose boundary values are as shown in the following figure. (16)

